\[\newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}}\]
d*()
- density functionp*()
- distribution functionr*()
- random data generationTo find this binomial probability | Use this R command |
---|---|
\(\Pr(x = a)\) | dbinom(x = a, size = n, prob = p) |
\(\Pr(x \leq a)\) | pbinom(q = a, size = n, prob = p) |
\(\Pr(x < a)\) | pbinom(q = a - 1, size = n, prob = p) |
\(\Pr(x \geq a) = 1 - \Pr(x \leq a) = 1 - \Pr (x \leq a-1)\) | 1 - pbinom(q = a - 1, size = n, prob = p) |
\(\Pr(x > a) = 1 - \Pr(x \leq a)\) | 1 - pbinom(q = a, size = n, prob = p) |
\[ \begin{eqnarray} p_X(k) & = & {{N}\choose{k}}\pi^{k} (1- \pi)^{n-k} \end{eqnarray} \]
\[N = 10, k = 5, \pi = .5\]
N <- 10
k <- 5
prob <- .5
To find this binomial probability | Use this R command | Result |
---|---|---|
\(\Pr(x = 5)\) | dbinom(x = k, size = N, prob = prob) |
0.246 |
\(\Pr(x \leq 5)\) | pbinom(q = k, size = N, prob = prob) |
0.623 |
\(\Pr(x < 5)\) | pbinom(q = k - 1, size = N, prob = prob) |
0.377 |
\(\Pr(x \geq 5) = 1 - \Pr(x \leq 5) = 1 - \Pr (x \leq 5-1)\) | 1 - pbinom(q = k - 1, size = N, prob = prob) |
0.623 |
\(\Pr(x > 5) = 1 - \Pr(x \leq 5)\) | 1 - pbinom(q = k - 1, size = N, prob = prob) |
0.623 |
\[N = 20, k = 5, \pi = .4\]
N <- 20
k <- 5
prob <- .4
To find this binomial probability | Use this R command | Result |
---|---|---|
\(\Pr(x = 5)\) | dbinom(x = k, size = N, prob = prob) |
0.075 |
\(\Pr(x \leq 5)\) | pbinom(q = k, size = N, prob = prob) |
0.126 |
\(\Pr(x < 5)\) | pbinom(q = k - 1, size = N, prob = prob) |
0.051 |
\(\Pr(x \geq 5) = 1 - \Pr(x \leq 5) = 1 - \Pr (x \leq 5-1)\) | 1 - pbinom(q = k - 1, size = N, prob = prob) |
0.949 |
\(\Pr(x > 5) = 1 - \Pr(x \leq 5)\) | 1 - pbinom(q = k - 1, size = N, prob = prob) |
0.949 |
\[N = 1, k = 1, \pi = .4\]
N <- 1
k <- 1
prob <- .4
To find this Bernoulli probability | Use this R command | Result |
---|---|---|
\(\Pr(x = 1)\) | dbinom(x = k, size = N, prob = prob) |
0.4 |
\(\Pr(x \leq 1)\) | pbinom(q = k, size = N, prob = prob) |
1 |
\(\Pr(x < 1)\) | pbinom(q = k - 1, size = N, prob = prob) |
0.6 |
\(\Pr(x \geq 1) = 1 - \Pr(x \leq 1) = 1 - \Pr (x \leq 1-1)\) | 1 - pbinom(q = k - 1, size = N, prob = prob) |
0.4 |
\(\Pr(x > 1) = 1 - \Pr(x \leq 1)\) | 1 - pbinom(q = k - 1, size = N, prob = prob) |
0.4 |
Simulate 1000 observations
set.seed(1234)
# store in a vector
rbinom(1000, size = 10, prob = .5)
## [1] 3 5 5 6 7 6 1 4 6 5 6 5 4 7 4 7 4 4 4 4 4 4 3
## [24] 2 4 6 5 7 7 2 5 4 4 5 4 6 4 4 9 6 5 6 4 5 4 5
## [47] 6 5 4 6 3 4 6 5 3 5 5 6 4 7 7 2 4 2 4 6 4 5 2
## [70] 5 3 7 2 6 3 5 5 3 4 6 7 5 3 5 4 7 5 4 3 7 3 7
## [93] 3 3 3 5 4 2 4 6 2 5 4 4 3 4 3 3 5 2 6 3 8 3 4
## [116] 7 8 4 3 6 6 7 9 7 5 4 4 5 5 4 8 6 3 5 7 5 7 5
## [139] 6 7 5 8 4 5 4 6 6 5 8 5 5 4 3 7 4 8 5 9 4 5 5
## [162] 5 5 4 3 6 5 3 6 4 6 5 6 5 4 6 5 5 3 4 5 4 5 3
## [185] 8 2 7 6 4 6 6 9 3 7 6 6 7 6 8 6 6 5 4 6 5 6 4
## [208] 5 4 8 5 4 4 6 5 7 6 6 5 7 5 2 4 4 3 5 6 4 5 5
## [231] 6 5 3 6 5 4 6 4 5 9 5 4 4 6 8 5 6 5 8 6 5 5 4
## [254] 4 3 5 4 1 5 5 7 2 5 4 3 3 6 2 2 6 4 6 4 6 2 5
## [277] 6 5 4 4 4 5 7 6 6 4 5 4 6 6 6 5 8 4 5 6 6 3 6
## [300] 4 4 8 5 5 8 5 4 9 5 6 7 6 5 5 3 4 4 5 4 7 4 7
## [323] 5 3 4 4 5 4 6 7 6 7 8 4 5 5 4 2 7 5 8 4 5 8 4
## [346] 4 2 6 7 2 4 6 3 6 9 7 5 6 5 6 1 5 5 4 7 8 6 4
## [369] 6 6 8 4 7 5 4 5 6 3 5 6 4 4 1 3 4 3 6 4 8 8 6
## [392] 6 6 6 3 7 5 5 2 4 6 5 6 6 5 4 6 3 5 5 6 6 8 4
## [415] 7 5 5 6 3 5 6 7 4 3 7 4 2 5 4 4 6 6 5 7 4 6 5
## [438] 7 6 5 6 7 6 5 8 5 7 6 5 2 4 6 9 8 6 6 4 5 5 2
## [461] 4 7 5 5 4 4 5 5 6 5 3 4 0 8 5 8 5 5 6 3 5 5 6
## [484] 4 3 3 6 6 6 3 5 6 7 4 6 4 5 3 5 5 6 6 7 2 6 7
## [507] 6 7 3 6 4 8 7 5 3 6 5 3 6 4 7 4 4 7 5 6 2 2 6
## [530] 4 4 6 5 6 3 9 6 6 6 5 5 5 8 4 6 5 7 7 8 7 4 4
## [553] 6 3 7 8 5 2 6 7 3 9 6 7 4 7 6 5 4 3 6 6 4 6 5
## [576] 5 3 5 5 6 7 2 5 4 2 4 4 8 8 5 8 7 3 5 4 6 6 6
## [599] 6 3 4 4 3 5 5 5 7 4 5 5 4 6 4 3 8 5 4 6 6 5 7
## [622] 2 6 6 4 7 5 8 4 5 7 5 5 5 7 7 4 7 4 4 5 4 5 7
## [645] 4 4 3 7 5 6 4 6 7 5 3 5 7 2 4 7 5 8 6 2 4 5 6
## [668] 4 5 6 3 7 5 4 8 7 5 7 4 8 5 3 6 4 7 4 7 2 5 5
## [691] 7 5 4 5 1 3 4 5 4 6 1 5 6 5 4 3 5 6 3 5 6 8 8
## [714] 3 4 4 5 4 8 3 6 3 8 1 5 8 5 4 4 8 7 2 3 5 5 6
## [737] 5 6 8 7 4 3 3 4 5 0 5 6 4 6 5 6 5 7 4 7 6 7 4
## [760] 5 2 6 1 5 4 5 7 5 6 4 7 7 7 3 6 5 3 4 5 4 7 3
## [783] 0 4 4 6 7 2 6 3 6 3 6 5 6 4 5 6 4 7 3 7 5 4 4
## [806] 5 4 5 6 5 5 4 7 6 3 4 4 6 5 5 3 4 5 5 4 6 2 5
## [829] 5 5 4 6 7 7 4 6 6 4 5 6 3 5 6 4 5 7 5 7 6 6 5
## [852] 8 7 4 5 6 3 2 6 8 3 5 2 5 4 7 4 8 4 5 8 7 8 4
## [875] 6 4 3 3 5 5 6 4 5 5 5 7 4 2 3 2 7 6 5 5 4 4 6
## [898] 6 8 7 6 5 7 5 7 2 4 4 6 4 4 5 3 4 3 3 5 8 8 6
## [921] 5 5 4 4 5 4 6 5 3 3 3 9 2 5 3 5 4 5 5 5 7 5 6
## [944] 6 5 5 4 3 5 4 6 8 4 6 7 2 7 5 3 6 4 5 7 6 2 3
## [967] 6 4 5 4 10 6 1 6 4 6 6 4 8 5 6 7 3 6 8 4 2 8 3
## [990] 4 5 6 8 3 6 1 6 4 8 4
# store in a data frame
data_frame(x = rbinom(1000, size = 10, prob = .5))
## # A tibble: 1,000 x 1
## x
## <int>
## 1 7
## 2 5
## 3 3
## 4 4
## 5 6
## 6 5
## 7 5
## 8 3
## 9 8
## 10 8
## # ... with 990 more rows
rerun(.n = 10, rbinom(10, size = 10, prob = .5)) %>%
bind_cols()
## # A tibble: 10 x 10
## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
## <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
## 1 3 2 7 5 5 4 7 4 5 7
## 2 4 7 7 5 5 5 5 3 2 6
## 3 5 6 7 4 4 7 3 7 3 6
## 4 5 4 2 5 8 5 4 4 5 3
## 5 3 5 3 1 5 6 3 5 4 5
## 6 6 4 7 5 8 7 8 6 5 4
## 7 6 4 4 5 4 5 4 4 6 2
## 8 2 6 4 4 4 5 4 6 1 7
## 9 6 6 5 3 4 3 3 6 8 4
## 10 4 4 3 5 5 5 2 4 4 5
rerun(.n = 9, rbinom(1000, size = 10, prob = .5)) %>%
bind_cols() %>%
gather(var, value) %>%
ggplot(aes(value)) +
geom_bar() +
facet_wrap(~var) +
labs(title = "Simulated draws from a Binomial PMF",
subtitle = expression(n == 10 ~ pi == .5),
x = expression(x),
y = expression(p[X] (k)))
# draw #1
set.seed(1234)
rbinom(10, size = 10, prob = .5)
## [1] 3 5 5 6 7 6 1 4 6 5
# draw #2
set.seed(1234)
rbinom(10, size = 10, prob = .5)
## [1] 3 5 5 6 7 6 1 4 6 5
To find this Poisson probability | Use this R command |
---|---|
\(\Pr(x = a)\) | dpois(x = a, lambda = p) |
\(\Pr(x \leq a)\) | ppois(q = a, lambda = p) |
\(\Pr(x < a)\) | ppois(q = a - 1, lambda = p) |
\(\Pr(x \geq a) = 1 - \Pr(x \leq a) = 1 - \Pr (x \leq a-1)\) | 1 - ppois(q = a - 1, lambda = p) |
\(\Pr(x > a) = 1 - \Pr(x \leq a)\) | 1 - ppois(q = a, lambda = p) |
\[N = 3, \lambda = 5\]
N <- 3
lambda <- 5
To find this Poisson probability | Use this R command | Results |
---|---|---|
\(\Pr(x = 3)\) | dpois(x = N, lambda = lambda) |
0.14 |
\(\Pr(x \leq 3)\) | ppois(q = N, lambda = lambda) |
0.265 |
\(\Pr(x < 3)\) | ppois(q = N - 1, lambda = lambda) |
0.125 |
\(\Pr(x \geq 3) = 1 - \Pr(x \leq 3) = 1 - \Pr (x \leq 3-1)\) | 1 - ppois(q = N - 1, lambda = lambda) |
0.875 |
\(\Pr(x > 3) = 1 - \Pr(x \leq 3)\) | 1 - ppois(q = N, lambda = lambda) |
0.735 |
\[N = 12, \lambda = 17.3\]
N <- 12
lambda <- 17.3
To find this Poisson probability | Use this R command | Results |
---|---|---|
\(\Pr(x = 3)\) | dpois(x = N, lambda = lambda) |
0.046 |
\(\Pr(x \leq 3)\) | ppois(q = N, lambda = lambda) |
0.121 |
\(\Pr(x < 3)\) | ppois(q = N - 1, lambda = lambda) |
0.075 |
\(\Pr(x \geq 3) = 1 - \Pr(x \leq 3) = 1 - \Pr (x \leq 3-1)\) | 1 - ppois(q = N - 1, lambda = lambda) |
0.925 |
\(\Pr(x > 3) = 1 - \Pr(x \leq 3)\) | 1 - ppois(q = N, lambda = lambda) |
0.879 |
Simulate 1000 observations
set.seed(1234)
# store in a vector
(X <- rpois(1000, lambda = 17.3))
## [1] 12 18 18 14 19 14 21 14 15 10 17 21 16 15 20 14 17 15 17 17 20 15 13
## [24] 20 21 31 24 11 23 12 22 15 13 12 15 20 17 13 13 25 20 27 17 14 15 12
## [47] 16 18 21 26 17 18 17 18 14 14 29 17 18 14 16 20 20 19 15 17 15 18 24
## [70] 21 15 27 22 21 19 18 17 20 19 16 26 14 17 18 17 16 14 17 15 20 12 13
## [93] 17 16 14 17 18 20 18 14 14 17 29 15 17 17 15 23 19 16 19 18 24 18 19
## [116] 18 15 16 16 27 20 19 16 13 15 21 13 16 18 19 24 17 15 16 14 15 19 10
## [139] 12 23 19 20 17 15 19 21 25 22 15 11 15 12 19 26 19 19 13 17 15 20 18
## [162] 20 18 20 24 21 17 12 22 12 10 14 16 14 23 18 22 17 17 18 9 29 20 14
## [185] 10 16 13 16 18 14 16 17 19 17 19 12 19 13 22 18 18 18 19 21 19 20 12
## [208] 24 18 20 11 21 15 20 10 14 20 27 18 17 18 14 21 25 14 13 17 18 13 21
## [231] 21 18 10 13 16 16 21 27 24 24 12 19 19 12 13 16 13 14 11 15 17 10 15
## [254] 23 18 18 17 21 21 15 17 15 22 20 19 16 17 9 18 21 15 14 12 14 16 13
## [277] 12 21 22 17 22 14 11 15 18 16 12 10 25 12 16 25 21 25 17 16 15 7 18
## [300] 17 26 14 28 20 21 22 23 18 18 18 18 18 15 21 18 11 15 26 22 19 19 17
## [323] 13 22 14 13 16 13 12 20 16 15 14 16 16 20 23 19 13 12 13 17 20 17 23
## [346] 17 12 24 16 16 23 26 17 22 15 12 18 14 18 13 8 18 15 18 21 16 16 22
## [369] 14 14 16 24 17 13 14 11 27 18 17 17 18 18 20 17 12 19 15 10 12 16 20
## [392] 11 18 30 26 14 20 11 14 12 18 22 24 21 12 16 12 16 10 15 17 12 25 15
## [415] 15 20 23 14 22 23 16 22 17 14 22 14 17 18 18 20 16 24 19 12 14 15 16
## [438] 28 15 17 14 12 18 19 19 11 9 14 16 15 5 15 14 21 16 11 23 13 13 13
## [461] 18 21 16 14 14 11 15 12 19 18 16 19 14 14 16 15 15 19 21 17 15 18 15
## [484] 13 15 10 21 20 13 23 12 13 17 19 17 11 13 18 13 25 13 15 24 13 16 17
## [507] 22 16 22 17 18 18 18 18 19 19 21 21 17 12 22 23 19 18 21 12 19 16 18
## [530] 21 16 16 19 12 19 16 26 13 15 18 15 19 18 16 19 12 14 19 24 22 27 18
## [553] 18 21 23 24 14 13 20 21 19 23 16 12 25 13 26 15 16 17 20 13 17 24 25
## [576] 15 14 19 16 12 22 21 22 15 14 23 16 17 18 20 16 27 13 20 12 17 17 20
## [599] 16 17 22 17 14 19 19 14 12 14 14 16 20 18 21 28 12 14 18 16 11 18 28
## [622] 19 23 21 17 15 22 15 19 24 16 18 20 12 13 15 19 22 16 12 16 17 17 14
## [645] 21 12 13 23 13 16 15 24 23 14 14 13 21 26 18 14 12 17 15 14 11 19 19
## [668] 14 16 19 10 18 13 17 15 14 15 17 13 16 20 18 17 9 20 15 16 18 10 18
## [691] 20 19 14 15 15 21 24 21 9 17 17 21 20 16 16 11 20 17 17 23 20 31 11
## [714] 21 19 17 16 15 18 14 15 14 25 9 15 15 14 18 14 17 12 11 26 23 23 20
## [737] 15 19 12 19 17 18 20 13 12 13 18 23 21 17 20 16 21 22 12 16 18 16 24
## [760] 9 27 16 23 20 24 27 18 13 16 21 20 18 17 19 21 22 14 19 18 17 21 16
## [783] 18 13 17 18 26 19 20 15 13 10 9 9 13 14 15 23 12 15 17 15 16 15 17
## [806] 13 25 15 15 16 21 18 18 17 14 14 25 14 14 12 16 22 17 10 16 23 21 18
## [829] 19 17 17 9 17 13 16 20 17 19 15 15 19 18 18 19 16 13 22 18 17 13 16
## [852] 14 20 18 14 17 19 33 18 23 17 19 16 26 22 16 16 17 17 14 20 11 20 20
## [875] 14 14 16 13 16 23 21 18 19 25 17 17 23 19 7 13 17 16 20 13 18 19 23
## [898] 18 20 22 15 20 18 24 17 29 18 16 17 29 13 13 17 13 18 17 20 24 21 14
## [921] 18 19 17 14 15 17 26 24 12 17 16 16 21 12 17 13 19 12 19 25 12 22 7
## [944] 14 14 14 17 13 18 13 16 14 22 18 11 27 20 10 23 20 14 17 19 13 17 22
## [967] 17 23 13 23 19 22 21 14 13 17 13 21 17 14 21 20 25 22 19 26 19 16 15
## [990] 16 18 11 10 19 15 17 28 14 21 23
What is the expected value of \(X\)? Its variance?
mean(X)
## [1] 17.4
var(X)
## [1] 17
If 85% of vehicles arriving at the Lincoln Tunnel (connecting New Jersey and New York City) have either New York or New Jersey license plates, what is the probability that, of the next 20 vehicles, 2 or fewer (that is, 0, 1, or 2) will bear license plates from states other than New Jersey or New York?
\[ \begin{eqnarray} p_X(k) & = & {{N}\choose{k}}\pi^{k} (1- \pi)^{n-k} \end{eqnarray} \]
One way to state the problem is:
\[ \sum_{k = 0}^2 {{N}\choose{k}}\pi^{k} (1- \pi)^{n-k} = \sum_{k = 0}^2 {{20}\choose{k}} 0.15^{k} (1- 0.15)^{20-k} \]
dbinom(0, 20, 0.15) + dbinom(1, 20, 0.15) + dbinom(2, 20, 0.15)
## [1] 0.405
Alternatively, we can frame this in terms of the CDF:
\[F_X(x) = \Pr (X \leq 2) = \sum_{k \leq 2} p_X(k)\]
pbinom(2, 20, 0.15)
## [1] 0.405
Book4Less.com is an online travel website that offers competitive prices on airline and hotel bookings. During a typical weekday, the website averages 10 visits per minute.
\[F_X(x) = \Pr (7 \leq x \leq 12) = \sum_{k = 7}^{12} e^{-10} \frac{10^{k}}{k!}\]
dpois(7:12, 10)
## [1] 0.0901 0.1126 0.1251 0.1251 0.1137 0.0948
sum(dpois(7:12, 10))
## [1] 0.661
ppois(12, 10) - ppois(6, 10)
## [1] 0.661
\[F_X(x) = \Pr (x > 12) = \sum_{k = 13}^{\infty} e^{-10} \frac{10^{k}}{k!}\]
sum(dpois(13:50, 10))
## [1] 0.208
1 - ppois(12, 10)
## [1] 0.208