\[\newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}}\]
d*() - density functionp*() - distribution functionr*() - random data generation| To find this binomial probability | Use this R command | 
|---|---|
| \(\Pr(x = a)\) | dbinom(x = a, size = n, prob = p) | 
| \(\Pr(x \leq a)\) | pbinom(q = a, size = n, prob = p) | 
| \(\Pr(x < a)\) | pbinom(q = a - 1, size = n, prob = p) | 
| \(\Pr(x \geq a) = 1 - \Pr(x \leq a) = 1 - \Pr (x \leq a-1)\) | 1 - pbinom(q = a - 1, size = n, prob = p) | 
| \(\Pr(x > a) = 1 - \Pr(x \leq a)\) | 1 - pbinom(q = a, size = n, prob = p) | 
\[ \begin{eqnarray} p_X(k) & = & {{N}\choose{k}}\pi^{k} (1- \pi)^{n-k} \end{eqnarray} \]
\[N = 10, k = 5, \pi = .5\]
N <- 10
k <- 5
prob <- .5| To find this binomial probability | Use this R command | Result | 
|---|---|---|
| \(\Pr(x = 5)\) | dbinom(x = k, size = N, prob = prob) | 
0.246 | 
| \(\Pr(x \leq 5)\) | pbinom(q = k, size = N, prob = prob) | 
0.623 | 
| \(\Pr(x < 5)\) | pbinom(q = k - 1, size = N, prob = prob) | 
0.377 | 
| \(\Pr(x \geq 5) = 1 - \Pr(x \leq 5) = 1 - \Pr (x \leq 5-1)\) | 1 - pbinom(q = k - 1, size = N, prob = prob) | 
0.623 | 
| \(\Pr(x > 5) = 1 - \Pr(x \leq 5)\) | 1 - pbinom(q = k - 1, size = N, prob = prob) | 
0.623 | 
\[N = 20, k = 5, \pi = .4\]
N <- 20
k <- 5
prob <- .4| To find this binomial probability | Use this R command | Result | 
|---|---|---|
| \(\Pr(x = 5)\) | dbinom(x = k, size = N, prob = prob) | 
0.075 | 
| \(\Pr(x \leq 5)\) | pbinom(q = k, size = N, prob = prob) | 
0.126 | 
| \(\Pr(x < 5)\) | pbinom(q = k - 1, size = N, prob = prob) | 
0.051 | 
| \(\Pr(x \geq 5) = 1 - \Pr(x \leq 5) = 1 - \Pr (x \leq 5-1)\) | 1 - pbinom(q = k - 1, size = N, prob = prob) | 
0.949 | 
| \(\Pr(x > 5) = 1 - \Pr(x \leq 5)\) | 1 - pbinom(q = k - 1, size = N, prob = prob) | 
0.949 | 
\[N = 1, k = 1, \pi = .4\]
N <- 1
k <- 1
prob <- .4| To find this Bernoulli probability | Use this R command | Result | 
|---|---|---|
| \(\Pr(x = 1)\) | dbinom(x = k, size = N, prob = prob) | 
0.4 | 
| \(\Pr(x \leq 1)\) | pbinom(q = k, size = N, prob = prob) | 
1 | 
| \(\Pr(x < 1)\) | pbinom(q = k - 1, size = N, prob = prob) | 
0.6 | 
| \(\Pr(x \geq 1) = 1 - \Pr(x \leq 1) = 1 - \Pr (x \leq 1-1)\) | 1 - pbinom(q = k - 1, size = N, prob = prob) | 
0.4 | 
| \(\Pr(x > 1) = 1 - \Pr(x \leq 1)\) | 1 - pbinom(q = k - 1, size = N, prob = prob) | 
0.4 | 
Simulate 1000 observations
set.seed(1234)
# store in a vector
rbinom(1000, size = 10, prob = .5)##    [1]  3  5  5  6  7  6  1  4  6  5  6  5  4  7  4  7  4  4  4  4  4  4  3
##   [24]  2  4  6  5  7  7  2  5  4  4  5  4  6  4  4  9  6  5  6  4  5  4  5
##   [47]  6  5  4  6  3  4  6  5  3  5  5  6  4  7  7  2  4  2  4  6  4  5  2
##   [70]  5  3  7  2  6  3  5  5  3  4  6  7  5  3  5  4  7  5  4  3  7  3  7
##   [93]  3  3  3  5  4  2  4  6  2  5  4  4  3  4  3  3  5  2  6  3  8  3  4
##  [116]  7  8  4  3  6  6  7  9  7  5  4  4  5  5  4  8  6  3  5  7  5  7  5
##  [139]  6  7  5  8  4  5  4  6  6  5  8  5  5  4  3  7  4  8  5  9  4  5  5
##  [162]  5  5  4  3  6  5  3  6  4  6  5  6  5  4  6  5  5  3  4  5  4  5  3
##  [185]  8  2  7  6  4  6  6  9  3  7  6  6  7  6  8  6  6  5  4  6  5  6  4
##  [208]  5  4  8  5  4  4  6  5  7  6  6  5  7  5  2  4  4  3  5  6  4  5  5
##  [231]  6  5  3  6  5  4  6  4  5  9  5  4  4  6  8  5  6  5  8  6  5  5  4
##  [254]  4  3  5  4  1  5  5  7  2  5  4  3  3  6  2  2  6  4  6  4  6  2  5
##  [277]  6  5  4  4  4  5  7  6  6  4  5  4  6  6  6  5  8  4  5  6  6  3  6
##  [300]  4  4  8  5  5  8  5  4  9  5  6  7  6  5  5  3  4  4  5  4  7  4  7
##  [323]  5  3  4  4  5  4  6  7  6  7  8  4  5  5  4  2  7  5  8  4  5  8  4
##  [346]  4  2  6  7  2  4  6  3  6  9  7  5  6  5  6  1  5  5  4  7  8  6  4
##  [369]  6  6  8  4  7  5  4  5  6  3  5  6  4  4  1  3  4  3  6  4  8  8  6
##  [392]  6  6  6  3  7  5  5  2  4  6  5  6  6  5  4  6  3  5  5  6  6  8  4
##  [415]  7  5  5  6  3  5  6  7  4  3  7  4  2  5  4  4  6  6  5  7  4  6  5
##  [438]  7  6  5  6  7  6  5  8  5  7  6  5  2  4  6  9  8  6  6  4  5  5  2
##  [461]  4  7  5  5  4  4  5  5  6  5  3  4  0  8  5  8  5  5  6  3  5  5  6
##  [484]  4  3  3  6  6  6  3  5  6  7  4  6  4  5  3  5  5  6  6  7  2  6  7
##  [507]  6  7  3  6  4  8  7  5  3  6  5  3  6  4  7  4  4  7  5  6  2  2  6
##  [530]  4  4  6  5  6  3  9  6  6  6  5  5  5  8  4  6  5  7  7  8  7  4  4
##  [553]  6  3  7  8  5  2  6  7  3  9  6  7  4  7  6  5  4  3  6  6  4  6  5
##  [576]  5  3  5  5  6  7  2  5  4  2  4  4  8  8  5  8  7  3  5  4  6  6  6
##  [599]  6  3  4  4  3  5  5  5  7  4  5  5  4  6  4  3  8  5  4  6  6  5  7
##  [622]  2  6  6  4  7  5  8  4  5  7  5  5  5  7  7  4  7  4  4  5  4  5  7
##  [645]  4  4  3  7  5  6  4  6  7  5  3  5  7  2  4  7  5  8  6  2  4  5  6
##  [668]  4  5  6  3  7  5  4  8  7  5  7  4  8  5  3  6  4  7  4  7  2  5  5
##  [691]  7  5  4  5  1  3  4  5  4  6  1  5  6  5  4  3  5  6  3  5  6  8  8
##  [714]  3  4  4  5  4  8  3  6  3  8  1  5  8  5  4  4  8  7  2  3  5  5  6
##  [737]  5  6  8  7  4  3  3  4  5  0  5  6  4  6  5  6  5  7  4  7  6  7  4
##  [760]  5  2  6  1  5  4  5  7  5  6  4  7  7  7  3  6  5  3  4  5  4  7  3
##  [783]  0  4  4  6  7  2  6  3  6  3  6  5  6  4  5  6  4  7  3  7  5  4  4
##  [806]  5  4  5  6  5  5  4  7  6  3  4  4  6  5  5  3  4  5  5  4  6  2  5
##  [829]  5  5  4  6  7  7  4  6  6  4  5  6  3  5  6  4  5  7  5  7  6  6  5
##  [852]  8  7  4  5  6  3  2  6  8  3  5  2  5  4  7  4  8  4  5  8  7  8  4
##  [875]  6  4  3  3  5  5  6  4  5  5  5  7  4  2  3  2  7  6  5  5  4  4  6
##  [898]  6  8  7  6  5  7  5  7  2  4  4  6  4  4  5  3  4  3  3  5  8  8  6
##  [921]  5  5  4  4  5  4  6  5  3  3  3  9  2  5  3  5  4  5  5  5  7  5  6
##  [944]  6  5  5  4  3  5  4  6  8  4  6  7  2  7  5  3  6  4  5  7  6  2  3
##  [967]  6  4  5  4 10  6  1  6  4  6  6  4  8  5  6  7  3  6  8  4  2  8  3
##  [990]  4  5  6  8  3  6  1  6  4  8  4
# store in a data frame
data_frame(x = rbinom(1000, size = 10, prob = .5))## # A tibble: 1,000 x 1
##        x
##    <int>
##  1     7
##  2     5
##  3     3
##  4     4
##  5     6
##  6     5
##  7     5
##  8     3
##  9     8
## 10     8
## # ... with 990 more rowsrerun(.n = 10, rbinom(10, size = 10, prob = .5)) %>%
  bind_cols()## # A tibble: 10 x 10
##       V1    V2    V3    V4    V5    V6    V7    V8    V9   V10
##    <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
##  1     3     2     7     5     5     4     7     4     5     7
##  2     4     7     7     5     5     5     5     3     2     6
##  3     5     6     7     4     4     7     3     7     3     6
##  4     5     4     2     5     8     5     4     4     5     3
##  5     3     5     3     1     5     6     3     5     4     5
##  6     6     4     7     5     8     7     8     6     5     4
##  7     6     4     4     5     4     5     4     4     6     2
##  8     2     6     4     4     4     5     4     6     1     7
##  9     6     6     5     3     4     3     3     6     8     4
## 10     4     4     3     5     5     5     2     4     4     5
rerun(.n = 9, rbinom(1000, size = 10, prob = .5)) %>%
  bind_cols() %>%
  gather(var, value) %>%
  ggplot(aes(value)) +
  geom_bar() +
  facet_wrap(~var) +
    labs(title = "Simulated draws from a Binomial PMF",
         subtitle = expression(n == 10 ~ pi == .5),
         x = expression(x),
         y = expression(p[X] (k)))# draw #1
set.seed(1234)
rbinom(10, size = 10, prob = .5)##  [1] 3 5 5 6 7 6 1 4 6 5
# draw #2
set.seed(1234)
rbinom(10, size = 10, prob = .5)##  [1] 3 5 5 6 7 6 1 4 6 5
| To find this Poisson probability | Use this R command | 
|---|---|
| \(\Pr(x = a)\) | dpois(x = a, lambda = p) | 
| \(\Pr(x \leq a)\) | ppois(q = a, lambda = p) | 
| \(\Pr(x < a)\) | ppois(q = a - 1, lambda = p) | 
| \(\Pr(x \geq a) = 1 - \Pr(x \leq a) = 1 - \Pr (x \leq a-1)\) | 1 - ppois(q = a - 1, lambda = p) | 
| \(\Pr(x > a) = 1 - \Pr(x \leq a)\) | 1 - ppois(q = a, lambda = p) | 
\[N = 3, \lambda = 5\]
N <- 3
lambda <- 5| To find this Poisson probability | Use this R command | Results | 
|---|---|---|
| \(\Pr(x = 3)\) | dpois(x = N, lambda = lambda) | 
0.14 | 
| \(\Pr(x \leq 3)\) | ppois(q = N, lambda = lambda) | 
0.265 | 
| \(\Pr(x < 3)\) | ppois(q = N - 1, lambda = lambda) | 
0.125 | 
| \(\Pr(x \geq 3) = 1 - \Pr(x \leq 3) = 1 - \Pr (x \leq 3-1)\) | 1 - ppois(q = N - 1, lambda = lambda) | 
0.875 | 
| \(\Pr(x > 3) = 1 - \Pr(x \leq 3)\) | 1 - ppois(q = N, lambda = lambda) | 
0.735 | 
\[N = 12, \lambda = 17.3\]
N <- 12
lambda <- 17.3| To find this Poisson probability | Use this R command | Results | 
|---|---|---|
| \(\Pr(x = 3)\) | dpois(x = N, lambda = lambda) | 
0.046 | 
| \(\Pr(x \leq 3)\) | ppois(q = N, lambda = lambda) | 
0.121 | 
| \(\Pr(x < 3)\) | ppois(q = N - 1, lambda = lambda) | 
0.075 | 
| \(\Pr(x \geq 3) = 1 - \Pr(x \leq 3) = 1 - \Pr (x \leq 3-1)\) | 1 - ppois(q = N - 1, lambda = lambda) | 
0.925 | 
| \(\Pr(x > 3) = 1 - \Pr(x \leq 3)\) | 1 - ppois(q = N, lambda = lambda) | 
0.879 | 
Simulate 1000 observations
set.seed(1234)
# store in a vector
(X <- rpois(1000, lambda = 17.3))##    [1] 12 18 18 14 19 14 21 14 15 10 17 21 16 15 20 14 17 15 17 17 20 15 13
##   [24] 20 21 31 24 11 23 12 22 15 13 12 15 20 17 13 13 25 20 27 17 14 15 12
##   [47] 16 18 21 26 17 18 17 18 14 14 29 17 18 14 16 20 20 19 15 17 15 18 24
##   [70] 21 15 27 22 21 19 18 17 20 19 16 26 14 17 18 17 16 14 17 15 20 12 13
##   [93] 17 16 14 17 18 20 18 14 14 17 29 15 17 17 15 23 19 16 19 18 24 18 19
##  [116] 18 15 16 16 27 20 19 16 13 15 21 13 16 18 19 24 17 15 16 14 15 19 10
##  [139] 12 23 19 20 17 15 19 21 25 22 15 11 15 12 19 26 19 19 13 17 15 20 18
##  [162] 20 18 20 24 21 17 12 22 12 10 14 16 14 23 18 22 17 17 18  9 29 20 14
##  [185] 10 16 13 16 18 14 16 17 19 17 19 12 19 13 22 18 18 18 19 21 19 20 12
##  [208] 24 18 20 11 21 15 20 10 14 20 27 18 17 18 14 21 25 14 13 17 18 13 21
##  [231] 21 18 10 13 16 16 21 27 24 24 12 19 19 12 13 16 13 14 11 15 17 10 15
##  [254] 23 18 18 17 21 21 15 17 15 22 20 19 16 17  9 18 21 15 14 12 14 16 13
##  [277] 12 21 22 17 22 14 11 15 18 16 12 10 25 12 16 25 21 25 17 16 15  7 18
##  [300] 17 26 14 28 20 21 22 23 18 18 18 18 18 15 21 18 11 15 26 22 19 19 17
##  [323] 13 22 14 13 16 13 12 20 16 15 14 16 16 20 23 19 13 12 13 17 20 17 23
##  [346] 17 12 24 16 16 23 26 17 22 15 12 18 14 18 13  8 18 15 18 21 16 16 22
##  [369] 14 14 16 24 17 13 14 11 27 18 17 17 18 18 20 17 12 19 15 10 12 16 20
##  [392] 11 18 30 26 14 20 11 14 12 18 22 24 21 12 16 12 16 10 15 17 12 25 15
##  [415] 15 20 23 14 22 23 16 22 17 14 22 14 17 18 18 20 16 24 19 12 14 15 16
##  [438] 28 15 17 14 12 18 19 19 11  9 14 16 15  5 15 14 21 16 11 23 13 13 13
##  [461] 18 21 16 14 14 11 15 12 19 18 16 19 14 14 16 15 15 19 21 17 15 18 15
##  [484] 13 15 10 21 20 13 23 12 13 17 19 17 11 13 18 13 25 13 15 24 13 16 17
##  [507] 22 16 22 17 18 18 18 18 19 19 21 21 17 12 22 23 19 18 21 12 19 16 18
##  [530] 21 16 16 19 12 19 16 26 13 15 18 15 19 18 16 19 12 14 19 24 22 27 18
##  [553] 18 21 23 24 14 13 20 21 19 23 16 12 25 13 26 15 16 17 20 13 17 24 25
##  [576] 15 14 19 16 12 22 21 22 15 14 23 16 17 18 20 16 27 13 20 12 17 17 20
##  [599] 16 17 22 17 14 19 19 14 12 14 14 16 20 18 21 28 12 14 18 16 11 18 28
##  [622] 19 23 21 17 15 22 15 19 24 16 18 20 12 13 15 19 22 16 12 16 17 17 14
##  [645] 21 12 13 23 13 16 15 24 23 14 14 13 21 26 18 14 12 17 15 14 11 19 19
##  [668] 14 16 19 10 18 13 17 15 14 15 17 13 16 20 18 17  9 20 15 16 18 10 18
##  [691] 20 19 14 15 15 21 24 21  9 17 17 21 20 16 16 11 20 17 17 23 20 31 11
##  [714] 21 19 17 16 15 18 14 15 14 25  9 15 15 14 18 14 17 12 11 26 23 23 20
##  [737] 15 19 12 19 17 18 20 13 12 13 18 23 21 17 20 16 21 22 12 16 18 16 24
##  [760]  9 27 16 23 20 24 27 18 13 16 21 20 18 17 19 21 22 14 19 18 17 21 16
##  [783] 18 13 17 18 26 19 20 15 13 10  9  9 13 14 15 23 12 15 17 15 16 15 17
##  [806] 13 25 15 15 16 21 18 18 17 14 14 25 14 14 12 16 22 17 10 16 23 21 18
##  [829] 19 17 17  9 17 13 16 20 17 19 15 15 19 18 18 19 16 13 22 18 17 13 16
##  [852] 14 20 18 14 17 19 33 18 23 17 19 16 26 22 16 16 17 17 14 20 11 20 20
##  [875] 14 14 16 13 16 23 21 18 19 25 17 17 23 19  7 13 17 16 20 13 18 19 23
##  [898] 18 20 22 15 20 18 24 17 29 18 16 17 29 13 13 17 13 18 17 20 24 21 14
##  [921] 18 19 17 14 15 17 26 24 12 17 16 16 21 12 17 13 19 12 19 25 12 22  7
##  [944] 14 14 14 17 13 18 13 16 14 22 18 11 27 20 10 23 20 14 17 19 13 17 22
##  [967] 17 23 13 23 19 22 21 14 13 17 13 21 17 14 21 20 25 22 19 26 19 16 15
##  [990] 16 18 11 10 19 15 17 28 14 21 23What is the expected value of \(X\)? Its variance?
mean(X)## [1] 17.4
var(X)## [1] 17If 85% of vehicles arriving at the Lincoln Tunnel (connecting New Jersey and New York City) have either New York or New Jersey license plates, what is the probability that, of the next 20 vehicles, 2 or fewer (that is, 0, 1, or 2) will bear license plates from states other than New Jersey or New York?
\[ \begin{eqnarray} p_X(k) & = & {{N}\choose{k}}\pi^{k} (1- \pi)^{n-k} \end{eqnarray} \]
One way to state the problem is:
\[ \sum_{k = 0}^2 {{N}\choose{k}}\pi^{k} (1- \pi)^{n-k} = \sum_{k = 0}^2 {{20}\choose{k}} 0.15^{k} (1- 0.15)^{20-k} \]
dbinom(0, 20, 0.15) + dbinom(1, 20, 0.15) + dbinom(2, 20, 0.15)## [1] 0.405
Alternatively, we can frame this in terms of the CDF:
\[F_X(x) = \Pr (X \leq 2) = \sum_{k \leq 2} p_X(k)\]
pbinom(2, 20, 0.15)## [1] 0.405
Book4Less.com is an online travel website that offers competitive prices on airline and hotel bookings. During a typical weekday, the website averages 10 visits per minute.
\[F_X(x) = \Pr (7 \leq x \leq 12) = \sum_{k = 7}^{12} e^{-10} \frac{10^{k}}{k!}\]
dpois(7:12, 10)## [1] 0.0901 0.1126 0.1251 0.1251 0.1137 0.0948
sum(dpois(7:12, 10))## [1] 0.661
ppois(12, 10) - ppois(6, 10)## [1] 0.661
\[F_X(x) = \Pr (x > 12) = \sum_{k = 13}^{\infty} e^{-10} \frac{10^{k}}{k!}\]
sum(dpois(13:50, 10))## [1] 0.208
1 - ppois(12, 10)## [1] 0.208