\[\newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}}\]
What is the area under the curve under \(f(x)\) between \(.5\) and \(2\)?
\[\int_{1/2}^{2} f(x)dx = F(2) - F(1/2)\]
\(X\) is a continuous random variable if there exists a nonnegative function defined for all \(x \in \Re\) having the property for any (measurable) set of real numbers \(B\),
\[ \begin{eqnarray} \Pr(X \in B) & = & \int_{B} f_X(x)dx \end{eqnarray} \]
The probability that the value of \(X\) falls within an interval is
\[\Pr (a \leq X \leq b) = \int_a^b f_X(x) dx\]
\(X \sim \text{Uniform}(0,1)\)
\[ f_X(x) = \left\{ \begin{array}{ll} c & \quad \text{if } 0 \leq x \leq 1 \\ 0 & \quad \text{otherwise} \end{array} \right. \]
for some constant \(c\)Constant can be determined from the normalization property
\[1 = \int_{-\infty}^{\infty} f_X(x)dx = \int_0^1 c dx = c \int_0^1 dx = c\]
\[ \begin{eqnarray} \Pr(X \in [0.2, 0.5]) & = & \int_{0.2}^{0.5} 1 dx \nonumber \\ & = & X |^{0.5}_{0.2} \nonumber \\ & = & 0.5 - 0.2 \nonumber \\ & = & 0.3\nonumber \end{eqnarray} \]
\[ \begin{eqnarray} \Pr(X \in [0, 1] ) & = & \int_{0}^{1} 1 dx \nonumber \\ & = & X |^{1}_{0} \nonumber \\ & = & 1 - 0 \nonumber \\ & = & 1 \nonumber \end{eqnarray} \]
\[ \begin{eqnarray} \Pr(X \in [0.5, 0.5]) & = & \int_{0.5}^{0.5} 1dx \nonumber \\ & = & X|^{0.5}_{0.5} \nonumber \\ & = & 0.5 - 0.5 \nonumber \\ & = & 0 \nonumber \end{eqnarray} \]
\[ \begin{eqnarray} \Pr(X \in \{[0, 0.2]\cup[0.5, 1]\}) & = & \int_{0}^{0.2} 1dx + \int_{0.5}^{1} 1dx \nonumber \\ & = & X_{0}^{0.2} + X_{0.5}^{1} \nonumber \\ & = & 0.2 - 0 + 1 - 0.5 \nonumber \\ & = & 0.7 \nonumber \end{eqnarray} \]
\[ f_X(x) = \left\{ \begin{array}{ll} \frac{1}{b-a} & \quad \text{if } a \leq x \leq b \\ 0 & \quad \text{otherwise} \end{array} \right. \]
Expected value of a continuous random variable \(X\) is defined as
\[\E[X] = \int_{-\infty}^{\infty} x f_X(x) dx\]Mean of \(g(X)\) satisfies the expected value rule:
\[\E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx\]
Consider a uniform PDF over an interval \([a,b]\):
\[ \begin{align} \E[X] &= \int_{-\infty}^{\infty} x f_X(x) dx \\ &= \int_a^b x \times \frac{1}{b-a} dx \\ &= \frac{1}{b-a} \times \frac{1}{2}x^2 \Big|_a^b \\ &= \frac{1}{b-a} \times \frac{b^2 - a^2}{2} \\ &= \frac{a+b}{2} \end{align} \]
To obtain the variance, we first calculate the second moment. We have
\[ \begin{align} \E[X^2] &= \int_a^b x^2 \times \frac{1}{b-a} dx \\ &= \frac{1}{b-a} \int_a^b x^2 dx \\ &= \frac{1}{b-a} \times \frac{1}{3}x^3 \Big|_a^b \\ &= \frac{b^3 - a^3}{3(b-a)} \\ &= \frac{a^2 + ab + b^2}{3} \end{align} \]
Variance is
\[ \begin{align} \Var(X) &= \E[X^2] - (\E[X])^2 \\ &= \frac{a^2 + ab + b^2}{3} - \left( \frac{a+b}{2} \right)^2 \\ &= \frac{(b-a)^2}{12} \end{align} \]
An exponential random variable has a PDF of the form
\[ f_X(x) = \left\{ \begin{array}{ll} \lambda e^{-\lambda x} & \quad \text{if } x \geq 0 \\ 0 & \quad \text{otherwise} \end{array} \right. \]
where \(\lambda\) is a positive parameter characterizing the PDF
\[\E[X] = \frac{1}{\lambda}, \quad \Var(X) = \frac{1}{\lambda^2}\]
For a continuous random variable \(X\) define its cumulative distribution function (CDF) \(F_X(x)\) as,
\[ \begin{eqnarray} F_X(x) & = & P(X \leq x) = \int_{-\infty} ^{x} f_X(t) dt \end{eqnarray} \]
Suppose \(X \sim Uniform(0,1)\), then
\[ \begin{eqnarray} F_X(x) & = & P(X\leq x) \\ & = & 0 \text{, if $x< 0$ } \\ & = & 1 \text{, if $x >1$ } \\ & = & x \text{, if $x \in [0,1]$} \end{eqnarray} \]
If \(X\) is continuous, the PDF and CDF can be obtained from each other by integration or differentiation
\[F_X(x) = \int_{-\infty}^x f_X(t) dt, \quad f_X(x) = \frac{dF_X}{dx} (x)\]
Suppose \(X\) is a random variable with \(X \in \Re\) and density
\[ \begin{eqnarray} f(x) & = & \frac{1}{\sqrt{2\pi \sigma^2}}\exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) \nonumber \end{eqnarray} \]
\[ \begin{eqnarray} X & \sim & \text{Normal}(\mu, \sigma^2) \nonumber \end{eqnarray} \]
\(Z\) is a standard normal distribution if
\[ \begin{eqnarray} Z & \sim & \text{Normal}(0,1) \nonumber \end{eqnarray} \]
We’ll call the cumulative distribution function of \(Z\),
\[ \begin{eqnarray} F_{Z}(x) & = & \frac{1}{\sqrt{2\pi} }\int_{-\infty}^{x} \exp(-z^2/2) dz \end{eqnarray} \]
Suppose \(Z \sim \text{Normal}(0,1)\)
\(Y \sim \text{Normal}(6, 4)\)
Scale/Location: If \(Z \sim N(0,1)\), then \(X = aZ + b\) is,
\[ \begin{eqnarray} X & \sim & \text{Normal} (b, a^2) \nonumber \end{eqnarray} \]
Assume we know:
\[ \begin{eqnarray} \E[Z] & = & 0 \\ \Var(Z) & = & 1 \end{eqnarray} \]
This implies that, for \(Y \sim \text{Normal}(\mu, \sigma^2)\)
\[ \begin{eqnarray} \E[Y] & = & \E[\sigma Z + \mu] \\ & = & \sigma \E[Z] + \mu \nonumber \\ & = & \mu \nonumber \\ \Var(Y) & = & \Var(\sigma Z + \mu) \\ & = & \sigma^2 \Var(Z) + \Var(\mu) \\ & = & \sigma^2 + 0 \\ & =& \sigma^2 \end{eqnarray} \]
If \(X\) is a normal random variable with mean \(\mu\) and variance \(\sigma^2\), and if \(a \neq 0, b\) are scalars, then the random variable
\[Y = aX + b\]
is also normal, with mean and variance
\[\E[Y] = a\mu + b, \quad \Var(Y) = a^2 \sigma^2\]
Then (by Central Limit Theorm) \(Y\) is Normally distributed, or
\[ \begin{eqnarray} Y & \sim & \text{Normal}(\mu, \sigma^2) \\ f_Y(y) & = & \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2} \right) \end{eqnarray} \]
\(\Pr(Y\geq 0.45)\) (What is the probability it isn’t that bad?)
\[ \begin{eqnarray} \Pr(Y \geq 0.45) & = & 1 - \Pr(Y \leq 0.45 ) \\ & = & 1 - \Pr(0.05 Z + 0.39 \leq 0.45) \\ & = & 1 - \Pr(Z \leq \frac{0.45-0.39 }{0.05} ) \\ & = & 1 - \frac{1}{\sqrt{2\pi} } \int_{-\infty}^{6/5} \exp(-z^2/2) dz \\ & = & 1 - F_{Z} (\frac{6}{5} ) \\ & = & 0.1150697 \end{eqnarray} \]
Conditional PDF of a continuous random variable \(X\), given an event \(A\) with \(\Pr (A) > 0\), is defined as a nonnegative function \(f_{X|A}\) that satisfies
\[\Pr (X \in B | A) = \int_B f_{X|A}(x) dx\]
for any subset \(B\) of the real lineNormalization property
\[\int_{-\infty}^{\infty} f_{X|A} (x) dx = 1\]
so that \(f_{X|A}\) is a legitimate PDF
When we condition on an event of the form \({X \in A}\) with \(\Pr (X \in A) > 0\) we get
\[\Pr (X \in B | X \in A) = \frac{\Pr (X \in B, X \in A)}{\Pr (X \in A)} = \frac{\int_{A \cap B} f_X(x) dx}{\Pr (X \in A)}\]
Conditional PDF is
\[ f_{X | X \in A} (x) = \left\{ \begin{array}{ll} \frac{f_X (x)}{\Pr (X \in A)} & \quad \text{if } x \in A \\ 0 & \quad \text{otherwise} \end{array} \right. \]
The time \(T\) until a new light bulb burns out is an exponential random variable with parameter \(\lambda\). Ariadne turns on the light, leaves the room, and when she returns, \(t\) time units later, finds that the light bulb is still on, which corresponds to the event \(A = \{ T > t \}\). Let \(X\) be the additional time until the light bulb burns out. What is the conditional PDF of \(X\), given the event \(A\)?
For \(x \geq 0\),
\[ \begin{align} \Pr (X > x | A) &= \Pr (T > t + x | T > t) \\ &= \frac{\Pr (T > t + x )\cap \Pr(T > t)}{\Pr( T >t)} \\ &= \frac{\Pr (T > t + x)}{\Pr (T > t)} \\ &= \frac{1 - \lambda e^{-\lambda(t + x)}}{1 - \lambda e^{-\lambda t}} \\ &= \frac{ e^{-\lambda(t + x)}}{ e^{-\lambda t}} \\ &= e^{-\lambda x} \end{align} \]
According to British weather forecasters, the average monthly rainfall in London during the month of June is \(\mu = 2.09\) inches. Assume the monthly precipitation is a normally-distributed random variable with a standard deviation of \(\sigma = 0.48\) inches.
\[\Pr (1.5 \leq x \leq 2.5) = \Pr (-1.23 \leq z \leq 0.85) = 0.694\]
pnorm(q = 2.5, mean = 2.09, sd = 0.48) - pnorm(q = 1.5, mean = 2.09, sd = 0.48)
## [1] 0.694
\[\Pr (x \leq 1) = \Pr (z \leq -2.27) = 0.012\]
pnorm(q = 1, mean = 2.09, sd = 0.48)
## [1] 0.0116
Since \(z = 1.645\) cuts off the upper 5% of the standard normal probability distribution, we solve for the corresponding value of \(x\).
\[ \begin{align} \frac{x - \mu}{\sigma} &= 1.645 \\ x &= \mu + 1.645 \times \sigma \\ &= 2.09 + 1.648 \times 0.48 \\ &= 2.09 + 0.79 \\ &= 2.88 \end{align} \]
qnorm(p = .95, mean = 2.09, sd = 0.48)
## [1] 2.88
Book4Less.com is an online travel website that offers competitive prices on airline and hotel bookings. During a typical weekday, the website averages 10 visits per minute.