\[\newcommand{\E}{\mathrm{E}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand{\se}{\text{se}} \newcommand{\Lagr}{\mathcal{L}} \newcommand{\lagr}{\mathcal{l}}\]
\[Y = \beta_0 + \beta_1 X + \beta_2 Z + \epsilon_i\]
\[\E[Y] = \beta_0 + \beta_1 X + \beta_2 Z\]
\[\frac{\delta \E[Y]}{\delta X} = \beta_1\]
\[\frac{\delta \E[Y]}{\delta Z} = \beta_2\]
\[Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 XZ + \epsilon_i\]
\[ \begin{align} \E[Y] & = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 XZ \\ & = \beta_0 + \beta_2 Z + (\beta_1 + \beta_3 Z) X \end{align} \]
\[\frac{\delta \E[Y]}{\delta X} = \beta_1 + \beta_3 Z\]
\[\E[Y] = \beta_0 + \beta_2 Z + \psi_1 X\]
\[ \begin{align} \E[Y] & = \beta_0 + \beta_1 X + (\beta_2 + \beta_3 X) Z \\ & = \beta_0 + \beta_1 X + \psi_2 Z \end{align} \]
If \(Z = 0\), then:
\[ \begin{align} \E[Y] & = \beta_0 + \beta_1 X + \beta_2 (0) + \beta_3 X (0) \\ & = \beta_0 + \beta_1 X \end{align} \]
If \(X = 0\), then:
\[ \begin{align} \E[Y] & = \beta_0 + \beta_1 (0) + \beta_2 Z + \beta_3 (0) Z \\ & = \beta_0 + \beta_2 Z \end{align} \]\(\psi_1\) and \(\psi_2\)
Obtaining estimates of parameters
\[\hat{\psi}_1 = \hat{\beta}_1 + \hat{\beta}_3 Z\] \[\hat{\psi}_2 = \hat{\beta}_2 + \hat{\beta}_3 X\]
Obtaining estimates of standard errors
\[\widehat{\text{Var}(\hat{\psi}_1}) = \widehat{\text{Var} (\hat{\beta}_1)} +Z^2 \widehat{\text{Var} (\hat{\beta}_3)} + 2 Z \widehat{\text{Cov} (\hat{\beta}_1, \hat{\beta}_3)}\]
\[\widehat{\text{Var}(\hat{\psi}_2}) = \widehat{\text{Var} (\hat{\beta}_2)} + X^2 \widehat{\text{Var} (\hat{\beta}_3)} + 2 X \widehat{\text{Cov} (\hat{\beta}_2, \hat{\beta}_3)}\]
\[Y = \beta_0 + \beta_1 D_1 + \beta_2 D_2 + \beta_3 D_1 D_2 + \epsilon_i\]
\[ \begin{align} \E[Y | D_1 = 0, D_2 = 0] & = \beta_0 \\ \E[Y | D_1 = 1, D_2 = 0] & = \beta_0 + \beta_1 \\ \E[Y | D_1 = 0, D_2 = 1] & = \beta_0 + \beta_2 \\ \E[Y | D_1 = 1, D_2 = 1] & = \beta_0 + \beta_1 + \beta_2 + \beta_3 \\ \end{align} \]
\[Y = \beta_0 + \beta_1 X + \beta_2 D + \beta_3 XD + \epsilon_i\]
\[ \begin{align} \E[Y | X, D = 0] & = \beta_0 + \beta_1 X \\ \E[Y | X, D = 1] & = (\beta_0 + \beta_2) + (\beta_1 + \beta_3) X \end{align} \]
\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon_i\]
\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon_i\]
\[Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon\]
\[\frac{\delta \E[Y]}{\delta X} = \beta_1 + 2 \beta_2 X\]
\[ \begin{align} Y = \beta_0 &+ \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_1 X_2 \\ & + \beta_5 X_1 X_3 + \beta_6 X_2 X_3 + \beta_7 X_1 X_2 X_3 + \epsilon \end{align} \]
\[ \begin{align} Y = \beta_0 &+ \beta_1 X + \beta_2 D_1 + \beta_3 D_2 + \beta_4 X D_1 \\ & + \beta_5 X D_2 + \beta_6 D_1 D_2 + \beta_7 X D_1 D_2 + \epsilon \end{align} \]
ObamaTherm
)RConserv
ObamaConserv
GOP
## ObamaTherm RConserv ObamaConserv GOP
## Min. : 0.0 Min. :1.00 Min. :1.00 Min. :0.00
## 1st Qu.: 50.0 1st Qu.:2.00 1st Qu.:2.00 1st Qu.:0.00
## Median : 75.0 Median :5.00 Median :2.00 Median :0.00
## Mean : 69.6 Mean :4.24 Mean :2.98 Mean :0.24
## 3rd Qu.:100.0 3rd Qu.:6.00 3rd Qu.:4.00 3rd Qu.:0.00
## Max. :100.0 Max. :7.00 Max. :7.00 Max. :1.00
## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 93.4 1.57 59.4 0.
## 2 RConserv -4.10 0.368 -11.2 9.48e-28
## 3 GOP -26.5 1.59 -16.7 2.82e-57
## # A tibble: 1 x 11
## r.squared adj.r.squared sigma statistic p.value df logLik AIC
## * <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl>
## 1 0.325 0.324 23.1 336. 9.28e-120 3 -6365. 12738.
## # ... with 3 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>
\[ \begin{align} \text{Obama} = \beta_0 &+ \beta_1 (\text{RConserv}) \\ & + \beta_2 (\text{GOP})\\ & + \beta_3 (\text{RConserv}) (\text{GOP}) \\ & + \epsilon \end{align} \]
## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 92.3 1.64 56.2 0.
## 2 RConserv -3.81 0.388 -9.81 5.26e-22
## 3 GOP -11.1 6.68 -1.66 9.79e- 2
## 4 RConserv:GOP -2.86 1.20 -2.38 1.75e- 2
## # A tibble: 1 x 11
## r.squared adj.r.squared sigma statistic p.value df logLik AIC
## * <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl>
## 1 0.328 0.326 23.0 226. 1.15e-119 4 -6362. 12735.
## # ... with 3 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>
GOP = 0
\[ \begin{align} E(\text{Obama}) = 92.255 & -3.805 (\text{RConserv}) -11.069 (0)\\ & -2.856 (\text{RConserv} \times 0) \\ = 92.255 & -3.805 (\text{RConserv}) \end{align} \]
GOP = 1
\[ \begin{align} E(\text{Obama}) & = (92.255 -11.069 (1)) + (-3.805 -2.856 (\text{RConserv} \times 1)) \\ & = 81.186 -6.661 (\text{RConserv}) \end{align} \]
## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 92.3 1.60 57.7 0.
## 2 RConserv -3.81 0.378 -10.1 7.87e-23
## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 81.2 6.98 11.6 1.90e-26
## 2 RConserv -6.66 1.22 -5.44 1.04e- 7
\[ \begin{align} \text{Obama} = \beta_0 &+ (\beta_1 + \beta_3 \text{GOP}) (\text{RConserv}) \\ & + \beta_2 (\text{GOP}) + \epsilon \\ = &\beta_0 + \psi_1 (\text{RConserv}) + \beta_2 (\text{GOP}) + \epsilon \end{align} \]
Point estimate
## [1] -13.9
Standard error
\[\hat{\sigma}_{\hat{\psi}_1} = \sqrt{\widehat{\text{Var}(\hat{\beta}_1)} + (\text{GOP})^2 \widehat{\text{Var}(\hat{\beta_3})} + 2 (\text{GOP}) \widehat{\text{Cov}(\hat{\beta}_1 \hat{\beta}_3)}}\]
## (Intercept) RConserv GOP RConserv:GOP
## (Intercept) 2.691 -0.574 -2.691 0.574
## RConserv -0.574 0.151 0.574 -0.151
## GOP -2.691 0.574 44.677 -7.797
## RConserv:GOP 0.574 -0.151 -7.797 1.442
## [1] 1.14
linearHypothesis(obama_ideo_gop, "RConserv + RConserv:GOP")
## Linear hypothesis test
##
## Hypothesis:
## RConserv + RConserv:GOP = 0
##
## Model 1: restricted model
## Model 2: ObamaTherm ~ RConserv * GOP
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 1394 757039
## 2 1393 738815 1 18225 34.4 5.7e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
linearHypothesis(obama_ideo_gop, "GOP + 7 * RConserv:GOP")
## Linear hypothesis test
##
## Hypothesis:
## GOP + 7 RConserv:GOP = 0
##
## Model 1: restricted model
## Model 2: ObamaTherm ~ RConserv * GOP
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 1394 821850
## 2 1393 738815 1 83036 157 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\[ \begin{align} \text{Obama} = \beta_0 &+ \beta_1 (\text{RConserv}) \\ & + \beta_2 (\text{ObamaConserv})\\ & + \beta_3 (\text{RConserv}) (\text{ObamaConserv}) \\ & + \epsilon \end{align} \]
## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 117. 2.97 39.4 8.00e-229
## 2 RConserv -14.9 0.600 -24.9 2.52e-113
## 3 ObamaConserv -6.73 0.929 -7.25 7.06e- 13
## 4 RConserv:ObamaConserv 2.81 0.182 15.4 1.53e- 49
## # A tibble: 1 x 11
## r.squared adj.r.squared sigma statistic p.value df logLik AIC
## * <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl>
## 1 0.451 0.450 20.8 381. 8.30e-181 4 -6221. 12452.
## # ... with 3 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>